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Abstract. The decoding error probability of a code C measures the quality

of performance when C is used for error correction in data transmission. In
this note we compare different types of codes with regard to the decoding error

probability.

1. Introduction

From a pure mathematical point of view binary extremal self-dual codes of type
II deserve particular attention. They are related to unimodular even lattices, pro-
vide 5-designs, and often have interesting automorphism groups. In this paper we
investigate how good they perform if used for error correction in data transmission.
To measure the performance we take the decoding error probability and assume
that bounded distance decoding is used for correction of errors.

The notation thoughout the paper is standard and can be taken from [8]. A
binary self-dual code C is called of type II if for all codewords c ∈ C the weight
wt(c) is divisible by 4. Otherwise, i.e., 2 | wt(c) for all c ∈ C and there is a codeword
c with 4 - wt(c) we say that C is of type I. A binary self-dual code of length n and
minimum distance d satisfies

d ≤ 4
⌊ n

24

⌋
+ δ

where δ = 4 if n 6≡ 22 mod 24 and δ = 6 if n ≡ 22 mod 24 (see [11], [10]). We call C
extremal if the bound is attained. Furthermore, if 24 | n then an extremal self-dual
code is always of type II as Rains has shown in [11]. Finally, extremal codes of type
II do not exist for large n according to a result of Mallows and Sloane [9]. More
precisely, due to Zhang [13], the length n is bounded by 3928. Apart from section
2 all codes are binary.
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2. Decoding error probabilities

The question of decoding error probabilities was studied in [6] for bounded dis-
tance decoding. For the reader’s convenience we repeat here the main result which
we shall apply below to measure the quality of performance.

Assume that a linear [n, k, d] code C over a finite field K = Fq is used for error
correction in data transmission over a non-reliable channel, say with symbol error
probability p. In addition, we assume that bounded distance decoding is used, i.e.,
we decode only up to t ≤ d−1

2 errors. Finally, for x ∈ Kn and r ∈ N0 the set

Br(x) = {y | y ∈ Kn, d(x, y) ≤ r}
describes the ball around x of radius r.

Clearly, a decoding error occurs exactly if the receiver gets a vector y ∈ Bt(c)
for some codeword c ∈ C which was not transmitted. Thus the probability of a
decoding error is the conditional probability

P(C, t, p) = P (X ∈ C \ {c} | Y ∈ Bt(c)}
where the random variable X stands for the transmitted codeword and Y for the
received vector. As a main result of [6] we have

Theorem 1. Let C and C ′ be [n, k, d] codes with weight distributions (a0, . . . , an)
and (a′0, . . . , a

′
n) respectively. If the symbol error probability p is small enough then

for all t ≤ d−1
2 the following two conditions are equivalent.

a) P(C, t, p) < P(C ′, t, p).
b) (a0, . . . , an) ≺ (a′0, . . . , a

′
n), where ≺ means lexicographical ordering.

Thus for small p the quality of performance can be read off from the weight
distribution. We say that C performs better than C ′ if (a0, . . . , an) ≺ (a′0, . . . , a

′
n).

In this spirit we shall study different classes of codes in the following sections.

3. Self-dual codes vs non self-dual codes

Let C be a self-dual [n, n2 , d] code of type II with weight distribution (a0, . . . , an).
Suppose that C ′ is any other non self-dual code with the same parameters as C and
weight distribution (a′0, . . . , a

′
n). Since C is of type II we have ak = 0 for all k with

4 - k. Thus the weight function takes generically less values on C than on C ′, or in
other words, the codewords of C are concentrated in less weight values. Therefore
we may expect that a′d < ad, i.e., C ′ performs better than the self-dual code C of
type II. A next example shows that this is not true in general.

Let C be any extremal self-dual [32,16,8] code of type II, for instance the extended
quadratic residue code of length 31. Thus, by ([9], Theorem 2), we have ad = a8 =
620. In [3], Cheng and Sloane contructed a [32, 17, 8] code. If we delete one row
in the generator matrix of C, we obtain a [32, 16, 8] code C ′ which is not self-dual.
Computing a′d with Magma we get a′d = a8 = 681. Thus the self-dual type II code
C performs better than the non self-dual code C ′.

4. Experimental results

Let C and C ′ be extremal self-dual codes of length n and minimal distance d.
Suppose that C is of type II and C ′ of type I. By Gleason’s result [7], we know that
8 | n. Furthermore, by Rains [11], an extremal self-dual code of length n = 24m is
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always of type II. Thus we may assume that n = 24m+ 8 or n = 24m+ 16. Let ad
and a′d denote the number of codewords of weight d in C resp. C ′. Checking the
examples of known extremal codes we find the following. For the existence of the
particular codes we refer to [2], [5], [4].

n d ad (type II) a′d (type I)

32 8 620 364

40 8 285
125 + 16β (0 ≤ β ≤ 26)

(two codes are known with a′d = 285 i.e. β = 10)

56 12 8 190 ≤ 4 862

64 12 2 976
1 312 + 16β (0 ≤ β ≤ 284)

(in all known examples a′d ≤ 2336 and β ≤ 64)

80 16 97 565 ≤ 66 845

104 20 1 136 150 ≤ 739 046

We see that in the known examples of extremal self-dual codes the type I codes
always perform better than the type II provided n = 24m+ 8 ≥ 32. The parameter
β in the last column takes care of the fact that in contrast to extremal self-dual
type II codes the weight distribution of type I codes is not unique in general. For
n = 56, 80 and 104 we have computed a′d for all possible weight distributions and
the bounds are given in column four. Finally note that for n = 40 the two known
codes of type I which satisfy a′d = 285 perform worse than any extremal type II
code since a′d+2 6= 0, but ad+2 = 0.

In order to value the performance of self-dual type I codes we need the concept
of a shadow.

5. The shadow of self-dual codes

Let C be a [n, n/2, d] self-dual code of type I. Furthermore let C0 denote the
subcode of C consisting of all codewords whose weights are multiples of 4. If C2 =
C \ C0 then the shadow S = S(C) consists of all vectors u ∈ Fn

2 with the property
that

u · v = 0 for all v ∈ C0,

u · v = 1 for all v ∈ C2.

Note that C0
⊥ consists of the union of four cosets of C0, say C0∪C1∪C2∪C3. If

C = C0 ∪C2 then S = S(C) = C⊥0 \C = C1 ∪C3. For our purpose (comparing the
performance with codes of type II), we may suppose that 8 | n, by [7]. Using the
invariants of a self-dual code of type I the weight enumerator of C can be written
as

(1) A(x, y) =
∑

0≤j≤n
2

ajx
n−2jy2j =

∑
0≤i≤n

8

ci(x
2 + y2)

n
2−4i{x2y2(x2 − y2)2}i

with aj ∈ N0 and ci ∈ Z. By ([4], Theorem 5), we get

(2) S(x, y) =
∑

0≤j≤n
4

bjx
n−4jy4j =

∑
0≤i≤n

8

(−1)ici2
n
2−6i(xy)

n
2−4i(x4 − y4)2i
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for the weight enumerator of its shadow. Note that in our particular case, i.e., 8 | n,
the weights of the shadow are always divisible by 4.

Definition 1. A self-dual code C of type I is called a code with minimal shadow if
b1 = 1 in (2), i.e., the shadow of C has minimum weight 4 and contains exactly one
vector of weight 4.

Apart from minimal shadows we need the concept of s-extremality, a notion
which was introduced in [1] by Bachoc and Gaborit.

Lemma 1. ([1], Theorem 1) If C is a self-dual code of type I with minimum distance
d and minimum weight s of the shadow then 2d+ s ≤ n

2 + 4 unless n ≡ 22 mod 24
and d = b n

24c+ 6, in which case 2d+ s = n
2 + 8.

Definition 2. Under the assumptions of Lemma 1 a code C is called s-extremal if
the bounds are reached, i.e., if 2d+ s = n

2 + 4 or 2d+ s = n
2 + 8.

If C is s-extremal then the weight enumerator of C and its shadow are uniquely
determined (see ([1], Definition 2.2). If C is with minimal shadow then the enu-
merators are uniquely determined only in case when n = 24m + 8 ([12], Lemma
1)).

6. The performance of extremal self-dual codes of type I

In this section we prove

Theorem 2. In the set of self-dual extremal codes of type I and length n = 24m+8
or n = 24m+ 16 the s-extremal codes perform best.

We give the proof only for the case n = 24m + 8. For the other case the proof
runs similarly with only some minor changes in formulas.

Let C be an arbitrary self-dual code of type I and length n = 24m + 8. Since
all weights of the shadow S = S(C) are divisible by 4 the minimum weight of the
shadow can be written as 4s with s ≥ 1. We express this dependency on s in the
formulas for the weight enumerators.

Setting x = 1 in (1) and (2) we obtain

A(s)(y) =

12m+4∑
j=0

a
(s)
j y2j =

3m+1∑
i=0

c
(s)
i (1 + y2)12m+4−4i(y2(1− y2)2)i,

S(s)(y) =

6m+2∑
j=0

b
(s)
j y4j =

3m+1∑
i=0

(−1)ic
(s)
i 212m+4−6iy12m+4−4i(1− y4)2i.

(3)

Note that a
(s)
j , b

(s)
j ∈ N0 and c

(s)
j ∈ Z. As in [11] we may write

c
(s)
i =

i∑
j=0

αija
(s)
j =

3m+1−i∑
j=0

βijb
(s)
j

with αij , βij ∈ Q. We observe that both αij and βij do not depend on the parameter
s. For βij , we have

(4) βij = (−1)i2−12m−4+6i · 3m+ 1− j
i

(
3m+ i− j

3m+ 1− i− j

)
(i > 0),
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which is proved in [11]. That the αij do not depend on s can be seen similarly as
for βij using the Bürmann-Lagrange Theorem (see for instance [11]).

Furthermore, we know that

a
(s)
0 = 1, a

(s)
j = 0 for j = 1, . . . , 2m+ 1 (since C is extremal),

b
(s)
j = 0 for j = 0, . . . , s− 1 (since 4s is the minimum weight of S).

This implies immediately c
(s)
i = αi,0 for i = 1, 2, . . . , 2m + 1. For the coefficient

c
(s)
2m+2 we obtain the equation

(5) c
(s)
2m+2 = α2m+2,0 + α2m+2,2m+2a

(s)
2m+2 =

m−1∑
j=0

β2m+2,jb
(s)
j .

The formula (4) yields

(6) β2m+2,j = 28 · 3m+ 1− j
2m+ 2

(
5m+ 2− j
m− 1− j

)
.

Hence β2m+2,j > 0 for j = 1, 2, . . . ,m − 1 and therefore, by (5), c
(s)
2m+2 ≥ 0 since

b
(s)
j ≥ 0. Moreover, c

(s)
2m+2 = 0 if and only if b

(s)
1 = · · · = b

(s)
m−1 = 0. By Lemma 1,

we get 4s ≤ 4m since d = 4m+ 4, and in case s = m the code C is s-extremal. This

shows that c
(s)
2m+2 = 0 if and only if C is s-extremal. In that case we have

(7) a
(m)
2m+2 = − α2m+2,0

α2m+2,2m+2
.

We go back to the general case, i.e., we do not assume that C is s-extremal. Now,
by (5), we obtain

(8) a
(s)
2m+2 =

c
(s)
2m+2 − α2m+2,0

α2m+2,2m+2
=

c
(s)
2m+2

α2m+2,2m+2
+ a

(m)
2m+2.

Thus, to prove Theorem 2, we only have to show that

a
(s)
2m+2 > a

(m)
2m+2 for 1 ≤ s ≤ m− 1.

This is obviously equivalent to proving that α2m+2,2m+2 > 0 since c
(s)
2m+2 > 0 for

s < m.
By [11], we have

αi,0 = − n
2i

[
coeff. of yi−1 in (1 + y)−n/2−1+4i(1− y)−2i

]
= −12m+ 4

i

[
coeff. of yi−1 in (1 + y)−12m−5+4i(1− y)−2i

]
.
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For i = 2m+ 2 we compute

α2m+2,0 = −12m+ 4

2m+ 2

[
coeff. of y2m+1 in (1 + y)−12m−5+8m+8(1− y)−4m−4

]
= −6m+ 2

m+ 1

[
coeff. of y2m+1 in (1 + y)−4m+3(1− y)−4m−4

]
= −6m+ 2

m+ 1

[
coeff. of y2m+1 in (1 + y)7(1− y2)−4m−4

]
< 0.

Since a
(m)
2m+2 > 0 we obtain from (7) that α2m+2,2m+2 > 0 which completes the

proof of Theorem 2.

Remark 1. We would like to mention that we do not have a
(s−1)
2m+2 ≥ a

(s)
2m+2 in

general. In particular, it may happen that a
(1)
2m+2 < a

(s)
2m+2 for some s > 1. For

example, if n = 80 then a
(1)
2m+2 = 58 653 while a

(2)
2m+2 can be as large as 66 845.

7. Type I codes with minimal shadow vs type II codes

The aim of this section is to show

Theorem 3.

(a) Extremal self-dual codes of type I with minimal shadow perform better than
extremal self-dual codes of type II for lengths n = 24m + 8. In particular,
according to the last section, s-extremal codes perform better than extremal
self-dual codes of type II.

(b) s-extremal codes of type I perform better than extremal self-dual codes of
type II for lengths n = 24m+ 16.

Keeping the notation of the previous section we first consider an extremal code
C of type I with minimal shadow S and of length n = 24m + 8. As mentioned
earlier C contains exactly one vector, say v, of weight 4 = 4s, i.e., s = 1. Suppose
that S contains another vector w with wt(w) = i for some i ∈ {8, 12, . . . , 4m− 4}.
Since the sum of two vectors in S is a codeword in C [4] we have v + w ∈ C with
0 6= wt(v + w) ≤ 4m, a contradiction to the assumption that C is extremal, i.e.
d = 4m+ 4. This shows that

b
(1)
1 = 1, b

(1)
2 = · · · = b

(1)
m−1 = 0.

Rewriting equation (5) we get

c
(1)
2m+2 = α2m+2,0 + α2m+2,2m+2a

(1)
2m+2 = β2m+2,1.

Using equations (8) and (7) we see that

a
(1)
2m+2 =

c
(1)
2m+2 − α2m+2,0

α2m+2,2m+2
=

β2m+2,1

α2m+2,2m+2
+ a

(m)
2m+2

= −β2m+2,1

α2m+2,0
a
(m)
2m+2 + a

(m)
2m+2 = a

(m)
2m+2

(
1− β2m+2,1

α2m+2,0

)
.

(9)

Observe that all terms of the last expression are computable as follows:
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Clearly, a
(m)
2m+2 is the number of minimal weight vectors of an s-extremal code

which is known. More presicely, by [1], we have

(10) a
(m)
2m+2 =

n

d

∑
j,k∈N

j+k= d
2−1

(−1)j
(n

2 − 2d+ j

j

)(
d+ k − 1

k

)
.

Furthermore, by (6),

β2m+2,1 = 28 · 3m

2m+ 2

(
5m+ 1

m− 2

)
.

Finally, for α2m+2,0, in the previous section we found the expression

α2m+2,0 = −6m+ 2

m+ 1

[
coeff. of y2m+1 in (1 + y)7(1− y2)−4m−4

]
which turns out to be

α2m+2,0 = −6m+ 2

m+ 1

[
7

(
5m+ 3

m

)
+

(
7

3

)(
5m+ 2

m− 1

)
+

(
7

5

)(
5m+ 1

m− 2

)
+

(
5m

m− 3

)]
.

Thus a
(1)
2m+2 can be computed explicitely.

Let C ′ be an extremal self-dual code of length n = 24m+ 8 of type II with a′m+1

codewords of weight 4m+ 4. By [9], we have

a′m+1 =
1

4
n(n− 1)(n− 2)(n− 4)

(5m)!

m!(4m+ 4)!
.

Furthermore, by [13], we know that m < 159. Using a computer one easily shows
that

a
(1)
2m+2 < a′m+1

for m = 1, 2, . . . , 158. Thus we may conclude that in case n = 24m + 8 extremal
self-dual codes of type I with minimal shadow always perform better then extremal
self-dual codes of type II. This proves part (a).

Now let C be an s-extremal code of length 24m+ 16 and let C ′ be an extremal
self-dual code of the same length of type II. In this case the minimum weight of the

shadow of C is 4m+ 4. The number a
(m+1)
2m+2 of codewords of minimum weight of an

s-extremal code is stated (10). By [9], we have the formula

a′m+1 =
3

2
n(n− 2)

(5m+ 2)!

m!(4m+ 4)!

for the number of codewords of minimum weight in C ′. According to [13] we need

to compare a
(m)
2m+2 and a′2m+2 only for m < 164, what can easily be done by a

computer. We get

a
(m+1)
2m+2 < a′m+1

for all codes of length n = 24m+ 16, which completes the proof of Theorem 3.
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